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Abstract

This paper considers the optimum design of flexbeam cross-sections for a full-scale bearingless helicopter rotor, using an 

efficient hybrid optimization algorithm based on particle swarm optimization, and an improved genetic algorithm, with an 

effective constraint handling scheme for constrained nonlinear optimization. The basic operators of the genetic algorithm, 

of crossover and mutation, are revisited, and a new rank-based multi-parent crossover operator is utilized. The rank-based 

crossover operator simultaneously enhances both the local, and the global exploration. The benchmark results demonstrate 

remarkable improvements, in terms of efficiency and robustness, as compared to other state-of-the-art algorithms. The 

developed algorithm is adopted for two baseline flexbeam section designs, and optimum cross-section configurations are 

obtained with less function evaluations, and less computation time.
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1. Introduction

In recent decades, evolutionary computation has emerged 

as an efficient and powerful technique to solve real world 

design optimization problems. Numerous population-based 

algorithms based on the theory of evolution, such as the genetic 

algorithm (GA) and particle swarm optimization (PSO), 

are being routinely used in many engineering applications. 

Despite their popularity, there are various challenges, such 

as the premature convergence, and high computational 

load required to achieve global optimum solutions. The real 

world problems can be posed as highly nonlinear, convex or 

non-convex, and smooth or non-smooth, along with a large 

number of design variables and constraints. These often 

involve multiple local optima. 

The classical derivative-based algorithms utilize the 

gradient information of a continuous function to search for 

the local optima, which has been shown to be efficient. The 

derivative-free algorithms require function evaluations, 

instead of computing the gradients. For discontinuous 

functions, the derivatives may not exist, and hence the 

derivative-based algorithms may fail to reach the optimum 

solution. Moreover, these algorithms often depend on the 

choice of the starting points, and therefore cannot guarantee 

convergence to a global optimum. Further, the computation 

of the derivative, either exact or an approximation, adds 

to the computational cost. Population-based, derivative-

free algorithms are considered effective to overcome such 

difficulties, and lead to the reaching of global optimum 

solutions. 

Large-scale complex constrained problems can be tackled 

using the metaheuristic algorithms (e.g. PSO and GA), which 

are suitable to locate the global optimum [1]. The two main 

features of the metaheuristic algorithms are intensification 
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(exploitation), and diversification (exploration) [2]. 

Diversification is intended to explore the search space 

globally, whereas intensification is focused on directing the 

search to a small region of the search space. The convergence 

rate of the algorithm can be ensured, by maintaining the 

balance between the two features. 

There are various optimization approaches available 

in the literature for the optimal design of beam sections. 

Murugan and Ganguli [3] presented the optimal design 

of composite box beams, using a real-coded genetic 

algorithm (RCGA). The design optimization was 

decomposed into two levels; a global level, consisting of 

cross-sectional dimensions, and the local level, consisting 

of ply orientations. Suresh et al. [4] used a particle swam 

optimization (PSO)-based approach to optimize the box-

beam section, and proved it to be superior to the real-

coded genetic algorithm. Although the above-mentioned 

methods can be applied to find global optimum solutions, 

both methods suffer from drawbacks. The real-coded 

genetic algorithm, though better than the binary GA, has 

a slow convergence rate; whereas, the PSO may converge 

to a local optimum. To avoid these drawbacks, a hybrid of 

RCGA and PSO can be considered effective, in the design of 

optimum beam sections.

In the present study, a hybrid of particle swarm and a 

modified real-coded genetic algorithm, hereby called a 

particle swarm assisted genetic algorithm (PSGA), is applied 

to search for optimum solutions of the flexbeam cross-

section of a full-scale bearingless helicopter. The efficiency 

and efficacy of the proposed algorithm are investigated on 

several constrained engineering optimization problems. 

Numerical simulations are conducted, to demonstrate the 

promising application of the PSGA algorithm to different 

types of flexbeam sections.

2. Proposed Approach

The flowchart of the proposed PSGA is shown in Fig. 

1. In the particle swarm assisted genetic algorithm, the 

population is randomly initialized over the search space, 

with a uniform distribution. The population is then moved 

through two sequential phases, to find the best feasible 

solution. The first phase involves the enhancement of the 

population with worst fitness, using the PSO. The global-

local best inertia weight is used, to preserve the previous 

velocity. The objective function and constraint violation of 

the population are evaluated, and the population is ranked, 

using a pair-wise comparison. The population is then 

moved to the genetic algorithm (GA) phase. To improve 

the convergence and stability of the genetic algorithm, a 

new rank-based multi-parent crossover (RMPC) operator is 

introduced, based on the parents’ ranks, partially adopted 

from the differential evolution programming. The operator 

is based on the mutation operator of differential evolution, 

and the heuristic crossover operator. In RMPC, the scaling 
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factor and crossover rate for an individual depend on its rank 

in the population. First, three parents are selected, using the 

binary tournament selection scheme. The individuals are 

then ranked relative to each other. The parents are ranked 

in the order with the best parent having the lowest rank 

(R1<R2<R3). For a parent with i-th index in the population, 

and rank Ri, the scaling factor Si and crossover rate cri are 

computed as follows.
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where, N is the population size. The offsprings  are then generated by 

adding the position of each parent to the difference of positions of the other two parents, 

multiplied by a scaling factor.  
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where,  is the n-dimensional position vector of the parent. 

It can be deduced from the above equations that the parent with a better rank has a lower 

value of the scaling factor and higher crossover rate, and vice versa. The new offspring thus 

generated by a parent with a better rank will be closer to the parent, whereas the offspring 

generated by a parent with a worst rank will be farther from the parent. This improves the 

efficiency of the search, while maintaining the diversity in the population.  

To introduce additional randomness and preserve diversity in the algorithm, the polynomial 

based mutation operator developed by Deb [5] is used for the mutation in the GA phase. After 

the GA, the population is again ranked, according to the values of the objective function, and 

constraint violation. The iteration loop is continued, until the termination criteria are met. The 

termination criteria can be the maximum number of function evaluations, or no improvement 

in the objective function for a successive number of generations. 

The constraints are handled using the separation of feasible population. The constraint 

relaxation scheme proposed by Zhang [6] has been used in the current approach. At the initial 

generation, the individuals with constraint violation less than the median constraint violation 

of the population are considered as feasible. As the generations increase, the relaxation of the 

constraint violation is decreased, pushing the individuals towards the feasible region. The 

unique feature of the constraint-handling scheme is that the parameters are self-adaptive, and 
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where, xj is the n-dimensional position vector of the parent.

It can be deduced from the above equations that the 

parent with a better rank has a lower value of the scaling 

factor and higher crossover rate, and vice versa. The new 

offspring thus generated by a parent with a better rank will 

be closer to the parent, whereas the offspring generated by a 

parent with a worst rank will be farther from the parent. This 

improves the efficiency of the search, while maintaining the 

diversity in the population. 

To introduce additional randomness and preserve 

diversity in the algorithm, the polynomial based mutation 

operator developed by Deb [5] is used for the mutation in 

the GA phase. After the GA, the population is again ranked, 

according to the values of the objective function, and 

constraint violation. The iteration loop is continued, until 

the termination criteria are met. The termination criteria 

can be the maximum number of function evaluations, or 

no improvement in the objective function for a successive 

number of generations.

The constraints are handled using the separation of feasible 

population. The constraint relaxation scheme proposed by 

Zhang [6] has been used in the current approach. At the 

initial generation, the individuals with constraint violation 

less than the median constraint violation of the population 

are considered as feasible. As the generations increase, the 

relaxation of the constraint violation is decreased, pushing 

the individuals towards the feasible region. The unique 

feature of the constraint-handling scheme is that the 

parameters are self-adaptive, and updated automatically with 

the generations. To maintain the diversity in the population 

and re-evaluate the same area in the search space, a niching 

strategy is applied, based on the Euclidean distance between 

the parent and the offspring. If the offspring lies within the 

critical distance from the parent, the offspring is rejected.

3. Results

The parameters used in the PSGA are as follows. The 

total population size is 20, with 10 each for the particle 

swarm phase, and the RMP-GA phase. The parameters set 

for the PSO are: c1=c2=2.0. For rank-based multi-parent 

crossover operator, the scaling factors are set to Smin=0.6, 

Smax=0.95, and the crossover rates are set to crmin=0.85, 

crmax=0.95. The polynomial based mutation operator is 

used for the GA mutation. The mutation probability is self-

adaptive, which varies with the number of generations. 

The maximum number of function evaluations is limited to 

5,000, whereas the maximum number of generations is set 

to 250. The optimizations are performed on a computer with 
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3.40 GHz Intel Core i7 CPU and 8 GB RAM. The algorithm is 

implemented in Fortran 90.

3.1 Numerical Example: Stepped Cantilever Beam

To evaluate the performance of the algorithm, a mixed 

discrete stepped cantilever beam design problem has been 

considered. The objective is to minimize the volume of the 

stepped cantilever beam under the vertical tip force, shown 

in Fig. 2. The height and width of the rectangular cross section 

of each step form the design variables. The problem consists 

of 10 design variables, and 11 constraints. The width b1 and 

height h1 of the first step are integer values; the widths b2, 

b3 of the second and third steps are discrete values, chosen 

from a set of {2.4, 2.6, 2.8, 3.1}; the heights h2, h3 of the 

second and third steps are discrete values, chosen from a set 

of {45.0, 50.0, 55.0, 60.0}; and the rest of the design variables 

are continuous. Thirty independent runs were carried out, to 

test the robustness of the algorithm.

To solve this problem, Erbatur et al. [7] used a program 

called genetic algorithm based optimum structural design 

(GAOS), and Lemonge and Barbosa [8] used the genetic 

algorithm with an adaptive penalty method (APM). 

Bernardino et al. [9] used an artificial immune system with 

genetic algorithm. Later, Bernardino et al. [10] used the 

improved version of AIS-GA, and compared the results with 

the genetic algorithm with a stochastic ranking (SR). The 

optimal results are presented in Table 1, and the statistical 

results are shown in Table 2. The convergence histories of the 

objective function and constraint violation corresponding to 

the best solution obtained using PSGA are shown in Fig. 3. 

The PSGA converges toward the near-optimal solution of 

64593.00 in nearly 60 generations, requiring 1,377 function 

evaluations. The feasible global optimum solution is reached 

in 163 generations, with 3,746 function evaluations. The 

solution obtained using GAOS violates one of the constraints. 

A better objective value is reported by Bernardino et al. 

[10], obtained using the stochastic ranking (SR) with a 

genetic algorithm, which was obtained in 35,000 function 

evaluations. As compared to other approaches, PSGA 

finds the feasible global optimum in nearly 62.5-89.3% less 

number of function evaluations. The PSGA thus obtains an 

accurate solution, efficiently and consistently outperforming 

other algorithms.

3.2 Flexbeam Section Optimization

The cross sectional analysis program KSec2D [11] has been 

Table 2. Statistical results for the stepped cantilever beam design
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Table 2. Statistical results for the stepped cantilever beam design 
 fevals Best Mean Worst SD 
GAOS [7] 10,000 64447 NA NA NA 
APM [8] 35,000 64698.56 68107.05 73931.359 NA 
AIS-GA [9] 35,000 66533.47 71821.69 76852.86 NA 
AIS-GA [10] 35,000 64834.70 76004.24 102981.06 6.93E+03 
SR [10] 35,000 64599.65 83968.45 71240.03 3.90E+03 
Present PSGA 3,746 64578.22 67123.60 70568.17 2.11E+03 

 

  

Table 1. Optimal results for the stepped cantilever beam design
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 GAOS 
[7] 

APM 
[8] 

AIS-GA 

[9] 
AIS-GA 
[10] 

SR 
[10] 

Present 
PSGA 

b1 3 3 3 3 3 3 
b2 3.1 3.1 3.1 3.1 3.1 3.1 
b3 2.6 2.6 2.6 2.6 2.6 2.6 
b4 2.270 2.2894 2.3107138 2.2947 2.2837 2.280881 
b5 1.750 1.7931 2.2254148 1.8250 1.7532 1.749772 
h1 60 60 60 60 60 60 
h2 55 55 60 55 55 55.0 
h3 50 50 50 50 50 50.0 
h4 45.250 45.6256 43.18571 45.2153 45.5507 45.617623 
h5 35.000 34.5931 31.250282 35.1191 35.0631 34.995353 
V 64447 64698.56 66533.47 64834.70 64599.65 64578.22 
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used to compute the section properties of section stiffnesses, 

section offsets, and mass per unit length. MSC. Patran is 

used as a pre-processor, to generate the geometry and mesh. 

The geometry and mesh generation are automated using 

Patran command language (PCL). The input from Patran 

is generated in neutral file format, and then translated into 

KSec2D input format. 

The section optimization is demonstrated for two different 

configurations of the flexbeam section. The goal of the 

optimization is to minimize the mass per unit length of the 

section. Only the geometric dimensions are considered as 

design variables. It is worth mentioning that all the design 

variables are considered as discrete or integer multiples, 

thus considering manufacturing constraints. Note that the 

flexbeam sections are considered as symmetric. The side 

constraints are imposed on the section stiffnesses, and the 

upper limit constraint is imposed on the maximum failure 

index (FImax), obtained from the von-Mises failure criterion. 

The material properties are given in Table 3. The flexbeam 

sectional loads in the hover flight condition are shown in 

Table 4. The section optimization problem is formulated as 

follows:

Minimize mass/length

Subject to:
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and FImax is the maximum failure index. The subscript ‘0’ 

indicates the baseline properties.

The parameterized geometric model of flexbeam 

section-A is shown in Fig. 4. The baseline configuration 

of section-A is illustrated in Fig. 5, which shows the 

unidirectional glass region filled with two separate regions, 

and a skin layer of glass fabric core. There are eight design 

variables, which include the distance of core regions from 

the horizontal and vertical center-lines, radius of the fillet, 

and skin thickness. Table 5 presents the values of the design 

variables for the baseline configuration, and the upper 

and lower limits, along with the minimum precision. The 

optimal results obtained from the PSGA are presented in 

Table 6. The best solution converged to the optimum point 

after 18 generations. The optimized configuration is shown 

in Fig. 6. It can be observed that there is a 2.33% reduction 

in mass per unit length, owing to the increase in area of the 

glass fabric core regions, which have lower density than 

unidirectional glass. Additionally, the flap bending stiffness 

approaches the lower limit of the constraint boundary, due 

Table 3. Material properties
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Table 3. Material properties 
 Glass UD Glass Fabric 

E1=E2 (GPa) 51.5 23.6 

G12 (GPa) 4.8 3.28 

Density, ρ (kg/m3) 2014 1730 

Ultimate strength (MPa) 1656 452 

 

  

Table 4. Flexbeam sectional loads in hover flight condition
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Table 4. Flexbeam sectional loads in hover flight condition 

 Section-A Section-B 

Axial force, Fx (kN) 185.9 188.7 

Torsional moment, Mx (N.m) 160.0 233.1 

Flap bending moment, My (N.m) 663.6 -225.6 

Lag bending moment, Mz (N.m) -1590 -6520 
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Fig. 3. Convergence of the (a) objective function, and (b) constraint violation of 
the best solution for the stepped cantilever beam design 

                                                                                             (a)                                                                                                       (b)

Fig. 3. Convergence of the (a) objective function, and (b) constraint violation of the best solution for the stepped cantilever beam design
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Table 5. Design variables for flexbeam section-A
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Table 5. Design variables for flexbeam section-A 

Design variables Baseline Lower bound Upper bound Precision 

x1 (mm) 22.96 5.0 30 0.1 
x2 (mm) 25.32 10.0 50.0 0.1 
x3 (mm) 11.1 5.0 20.0 0.1 
x4 (mm) 2.31 2.2 5.0 0.1 
x5 (mm) 1.68 1.5 2.2 0.1 
x6 (mm) 7.0 4.0 15.0 0.1 
x7 (mm) 12.68 4.0 20.0 0.1 
x8 (mm) 0.32 0.32 3.2 0.32 

 

  
Table 6. Optimal results for flexbeam section-A
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Table 6. Optimal results for flexbeam section-A 
Design variables Baseline Optimum Difference (%) 
m (kg/mm) 9.69607E-03 9.47010E-03 -2.33 

EA (N) 2.31185E+08 2.23610E+08 -3.28 

EIY (N.mm2) 3.24367E+10 3.08179E+10 -4.99 

EIZ (N.mm2) 2.89743E+11 2.77824E+11 -4.11 

GJ (N.mm2) 9.82883E+09 9.49865E+09 -3.36 

FImax 0.0804 0.0831 3.36 
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Fig. 5. Baseline configuration of flexbeam section-A 

Fig. 5. Baseline configuration of flexbeam section-A

 

23 
 

 

 

  

 
 
 

Fig. 4. Flexbeam section-A 
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to the change in the section shape. The maximum failure 

index is slightly higher than the baseline, but well within the 

desired limit. The optimal results were obtained after 411 

function evaluations, and nearly 5 minutes of CPU time was 

utilized.

Figure 7 shows the parameterized geometry of 

flexbeam section-B, having double-H shape. The inner 

region consists of unidirectional glass, with an outer skin 

layer of glass fabric. There are thirteen design variables, 

including the skin thickness, fillets radii, and the 

horizontal and vertical distance of the H-shaped regions 

from the center-lines. The values of the baseline section, 
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Fig. 6. Optimized configuration of flexbeam section-A 

Fig. 6. Optimized configuration of flexbeam section-A

Table 7. Design variables for flexbeam section-B
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Table 7. Design variables for flexbeam section-B 

Design variables Baseline Lower bound Upper bound Precision 

x1 (mm) 2.32 2.0 2.5 0.1 
x2 (mm) 1.68 1.5 2.0 0.1 
x3 (mm) 7.05 5.0 10.0 0.1 
x4 (mm) 4.26 3.0 5.0 0.1 
x5 (mm) 5.85 5.0 20.0 0.1 
x6 (mm) 4.26 3.0 5.0 0.1 
x7 (mm) 12.1 5.0 20.0 0.1 
x8 (mm) 4.26 3.0 5.0 0.1 
x9 (mm) 5.97 5.0 20.0 0.1 
x10 (mm) 2.14 2.0 5.0 0.1 
x11 (mm) 14.68 12.0 25.0 0.1 
x12 (mm) 3.43 3.0 11.0 0.1 
x13 (mm) 0.32 0.32 1.60 0.32 
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and the upper and lower bounds of the design variables, 

along with minimum precision, are shown in Table 7. The 

baseline configuration of flexbeam section-B is shown in 

Fig. 8. The optimal results are presented in Table 8. The 

best solution converged to the optimum point after 29 

generations. The optimized section is shown in Fig. 9. The 

change in the shape of the double-H section can be noted, 

compared to the baseline. A mass reduction of 2.88% can 

be observed. Furthermore, the lag bending and torsion 

stiffnesses approach the lower limit of the constraint 

boundaries. The increase in the maximum failure index 

is approximately 4%, however, well below the design 

limit. The optimization algorithm required 664 function 

evaluations to reach the optimal solution, and consumed 

nearly 5 minutes of CPU time.

4. Conclusion

An advanced particle swarm assisted genetic algorithm 

PSGA has been developed by the hybridization of particle 

swarm optimization, and an improved real-coded genetic 

algorithm, for constrained optimization problems. A rank-

based multi-parent crossover operator is proposed for 

the genetic algorithm, based on the mutation operator of 

differential evolution. An effective parameter-free constraint-

handling scheme is implemented. The population with only 

worst fitness is enhanced through the particle swarm phase, 

to improve the efficiency. The performance of PSGA has 

been demonstrated for the design of a stepped cantilever 

beam, with mixed discrete-continuous design variables. 

The following remarks can be made, based on the obtained 

Table 8. Optimal results for flexbeam section-B
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Table 8. Optimal results for flexbeam section-B 
Design variables Baseline Optimum Difference (%) 
m (kg/mm) 3.19884E-03 3.10663E-03 -2.88 
EA (N) 7.94924E+07 7.71275E+07 -2.98 
EIY (N.mm2) 4.30482E+09 4.13903E+09 -3.85 
EIZ (N.mm2) 6.68440E+10 6.35769E+10 -4.89 
GJ (N.mm2) 2.57213E+08 2.44642E+08 -4.89 
FImax 0.3998 0.4162 4.10 
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Fig. 8. Baseline configuration of flexbeam section-B 

Fig. 8. Baseline configuration of flexbeam section-B
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results:

1) The PSGA is found to be more efficient than other state-

of-the-art algorithms. The efficiency of PSGA is attributed to 

the (a) enhancement of population with only worst fitness  in 

the particle swarm phase, and (b) rank-based multi-parent 

crossover operation in the genetic algorithm phase, which 

involves the improvement due to the scaling factor and 

crossover rate. 

2) The PSGA always finds the best solution in the feasible 

domain. This is due to the rank-based multi-parent crossover, 

which helps guarantee the feasibility of the solution, by 

shifting the solutions toward the feasible region. In addition, 

the feasibility-based relaxation scheme in the constraint-

handling technique ensures that the optimum solution does 

not get trapped in local optima.

3) Multiple independent runs verify the reliability of the 

PSGA in obtaining the consistent optimum solution, which 

can be measured through the standard deviation. The 

parameters do not require any additional tuning, based on 

the type of the problem.

The PSGA is successfully employed to design the flexbeam 

sections of a full-scale bearingless helicopter, with all 

discrete design variables. Although the problem size may be 

small, the number of function evaluations (section analyses) 

required to reach the optimal solution are reasonable, within 

very less CPU time. The optimization is performed on two 

different configurations. The dependency of the optimal 

solution and the optimum objective function on the section 

constraints can easily be identified. The PSGA can thus be 

efficiently utilized for the optimal design of composite rotor 

blade components, such as flexbeam, torque tube and blade 

airfoil sections.

Acknowledgement

This research was supported by KARI under the 
Technology Development of Bearingless Main Rotor Hub 
System funded by the Ministry of Knowledge Economy 
(MKE) of Korea.

References

[1] Talbi, E. G., Metaheuristics: From Design to 

Implementation, John Wiley & Sons, 2009.

[2] Blum, C., and Roli, A., “Metaheuristics in combinatorial 

optimization: overview and conceptual comparison”, ACM 

Computing Surveys, Vol. 35, No. 3, 2003, pp. 268-308.

[3] Murugan, M. S., Suresh, S., Ganguli, R., and Mani, V., 

“Target vector optimization of composite box beam using 

real-coded genetic algorithm: a decomposition approach”, 

Structural and Multidisciplinary Optimization, Vol. 33, 2007, 

pp. 131-146.

[4] Suresh, S., Sujit, P. B., Rao, and A. K., “Particle swarm 

optimization approach for multi-objective composite box-

beam design”, Composite Structures, Vol. 81, Issue 4, 2007, 

pp. 598-605.

[5] Deb, K., “An efficient constraint handling method for 

genetic algorithms”, Computer Methods in Applied Mechanics 

and Engineering, Vol. 186, Issues 2-4, 2000, pp. 311-338.

[6] Zhang, H., New strategies for global optimization of 

chemical engineering applications by differential evolution, 

Ph.D. Thesis, National University of Singapore, 2012.

[7] Erbatur, F., Hasançebi, O., Tütüncü, 

 

9 
 

Acknowledgement 

This research was supported by KARI under the Technology Development of Bearingless 

Main Rotor Hub System funded by the Ministry of Knowledge Economy (MKE) of Korea. 

 
 

References 

[1] Talbi, E. G., Metaheuristics: From Design to Implementation, John Wiley & Sons, 2009. 

[2] Blum, C., and Roli, A., “Metaheuristics in combinatorial optimization: overview and conceptual 

comparison”, ACM Computing Surveys, Vol. 35, No. 3, 2003, pp. 268-308. 

[3] Murugan, M. S., Suresh, S., Ganguli, R., and Mani, V., “Target vector optimization of composite 

box beam using real-coded genetic algorithm: a decomposition approach”, Structural and 

Multidisciplinary Optimization, Vol. 33, 2007, pp. 131-146. 

[4] Suresh, S., Sujit, P. B., Rao, and A. K., “Particle swarm optimization approach for multi-

objective composite box-beam design”, Composite Structures, Vol. 81, Issue 4, 2007, pp. 598-

605. 

[5] Deb, K., “An efficient constraint handling method for genetic algorithms”, Computer Methods in 

Applied Mechanics and Engineering, Vol. 186, Issues 2-4, 2000, pp. 311-338. 

[6] Zhang, H., New strategies for global optimization of chemical engineering applications by 

differential evolution, Ph.D. Thesis, National University of Singapore, 2012. 

[7] Erbatur, F., Hasançebi, O., Tütüncü, İ., Klç, H., “Optimal design of planar and space structures 

with genetic algorithms”, Computers and Structures, Vol. 75, Issue 2, 2000, pp. 209-224. 

[8] Lemonge, A. C. C., and Barbosa, H. J. C., “An adaptive penalty scheme for genetic algorithms in 

structural optimization”, International Journal for Numerical Methods in Engineering, Vol. 59, 

Issue 5, 2004, pp. 703-736. 

[9] Bernardino, H. S., Barbosa, H. J. C., and Lemonge, A. C. C., “A hybrid genetic algorithm for 

constrained optimization problems in mechanical engineering”, Proceedings of the IEEE 

Congress on Evolutionary Computation (CEC2007) , Singapore, 2007, pp. 646-653. 

[10] Bernardino, H. S., Barbosa, H. J. C., and Lemonge, A. C. C., Fonseca, L. G., “A new hybrid 

, Kılıç, H., 

“Optimal design of planar and space structures with genetic 

algorithms”, Computers and Structures, Vol. 75, Issue 2, 2000, 

pp. 209-224.

[8] Lemonge, A. C. C., and Barbosa, H. J. C., “An adaptive 

penalty scheme for genetic algorithms in structural 

optimization”, International Journal for Numerical Methods 

in Engineering, Vol. 59, Issue 5, 2004, pp. 703-736.

[9] Bernardino, H. S., Barbosa, H. J. C., and Lemonge, A. C. 

C., “A hybrid genetic algorithm for constrained optimization 

problems in mechanical engineering”, Proceedings of the 

IEEE Congress on Evolutionary Computation (CEC2007), 

Singapore, 2007, pp. 646-653.

[10] Bernardino, H. S., Barbosa, H. J. C., and Lemonge, A. 

C. C., Fonseca, L. G., “A new hybrid AIS-GA for constrained 

optimization problems in mechanical engineering”, 

Proceedings of the IEEE Congress on Evolutionary 

Computation (CEC2008), Hong Kong, China, 2008, pp. 1455-

1462.

[11] Park, I. J., Dhadwal, M. K., Jung, S. N., and Kim, D. 

H., “Experimental validation of cross-sectional analysis for 

composite rotor blades”, Proceedings of the 18th International 

Conference on Composite Materials (ICCM18), Jeju Island, 

Korea, 21-26 August, 2011.


